Seeing Significance: Is the 95%
Probability Range Easier To Perceive?

lan Ayres, Antonia R. Ayres-Brown, and Henry |. Ayres-Brown

95% intervals and 5% significance hold a privileged place in
statistics. From a mathematical perspective those numbers
seem arbitrary. But from a human perception perspective,

perhaps they're not.

social and natural sciences to justify

experimental results by demonstrat-
ing that they are statistically significant
at at least the 5% level. The origin of
this emphasis can be traced to Sir Ronald
Fisher, the father of modern statistics,
who first championed the standard in
1925 in Statistical Methods for Research
Workers. Fisher justified this standard, at
least in part, because of the ‘convenient’
fact that, in a normal distribution, the
5% cutoff falls almost exactly at the
second standard deviation. In Fisher's
words, “The [standard deviation] value
for which P = 0.05, or 1 in 20, is 1.96,
or nearly 2; it is convenient to take this
point as a limit in judging whether a
deviation ought to be considered signifi-
cant or not. Deviations exceeding twice

It is a veritable requirement in the

the standard deviation are thus formally
regarded as significant.”

However, in "On the Origins of the
.05 Level of Statistical Significance,”
published in American Psychologist, M.
Cowles and C. David showed that “[a]n
examination of the history of prob-
ability and statistical theory...indicates
that [Fisher's] choice was...influenced
by previous scientific conventions that,
themselves, were based on the notion
of ‘chance’ and the unlikelihood of an
event occurring.”

Regardless of the standard’s intel-
lectual provenance, a separate and often
debated question concerns whether it
is arbitrary. One answer to this ques-
tion is a Bayesian functionalist critique
by Dale Poirier and Justin Tobias that
powerfully points out that divorcing

hypothesis testing from an explicit char-
acterization of the loss function—what
consequentially turns on type [ and type
Il errors—is bound to be suboptimal.
But here we explore another sense
in which the 5% or 10% standard for
statistical significance might be non-
arbitrary. We seek to test whether the
5% or 10% standard for statistical
significance might hold a privileged
place in our practice because it holds
a privileged place cognitively. That is,
we seek to test whether people are more
accurate in estimating the central 90%
and 95% ranges of a normal distribution
than in estimating other probability
ranges (centered on the mean). We
hypothesize that people do a better
job in translating their casual observa-
tions into estimates of these probability
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Figure 1. The Normal Distribution and a Kinked Analog

ranges, which happen to coincide with
our traditions of statistical significance,
than they do in estimating other prob-
ability ranges.

We conducted a very simple study.
We asked college students to estimate
the range of heights that would just
include a particular proportion (which,
depending on the survey, was 50%, 75%,
90%, 95%, or 99%) of adult women in
the United States. Each of the ranges in
height that the respondents estimated
allowed us to infer an implicit standard
deviation estimate. For example, if a
respondent said that 95% of adult U.S.
women are between 59 and 69 inches
tall, we calculated an implicit standard
deviation for that response of 2.55
inches (=10/(2*%1.96)). We then com-
pared the implicit standard deviations
of each respondent to the population’s
actual standard deviation of 2.6 inches,
according to the National Center for
Health Statistics.

We found that implicit standard
deviations of respondents who were
asked the 90% question were signifi-
cantly more accurate than those who
were asked to estimate more extreme
ranges. This result, while no more than
suggestive, is consistent with the idea
that our traditional standards of statisti-
cal significance may be influenced by our
cognitive predispositions. Moreover, the
results suggest indirect questioning may
elicit more accurate information than
direct questioning. If you want to elicit
information about the 99% or 50% cen-
tered probability ranges, you might do
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better to ask a subject to estimate the
90% or 95% ranges.

Theory

Our hypothesis for a cognitive predispo-
sition toward more accurate estimates of
the 90% or 95% ranges derives from an
intuition that people may have an easier
time perceiving relatively kinked points
in a probability distribution. Imagine, for
example, that some randomized process
had 95% of its probability mass uni-
formly distributed within some range of
its mean (which, in Figure 1, is denoted
as plus or minus “2Z") and its remaining
probability mass uniformly distributed
in its two tails within the next equally
sized increments. We would predict that
people who casually observed a finite
number of draws from this distribution
would most accurately estimate the 95%
range (even if they were told nothing
about the distribution’s analytic struc-
ture) because their casual observations
would more easily tell them where the
drop off in the distribution occurred.
We think something analogous occurs
for people who casually observe draws
from the normal distribution.

While the normal probability density
function (pdf) has no kinks, it displays
its greatest convex curvature at approxi-
mately 1.73 standard deviations from
its mean. Falling between the two most
convex points of the curve is 91.7% of
the normal probability mass. In contrast,
the normal curve at one standard devia-
tion displays no curvature (the inflection

point) and asymptotes to no curvature
in its tails.

Just as with the kinked distribution,
we hypothesized that people can more
easily perceive the end of the drop off
in the normal distribution—and this
place in the distribution is signaled by
the convexity at the end of the drop
off. The segment of the distribution
with maximum curvature is the place
where the distribution goes from having
arelatively steep slope to a relatively flat
slope. In the normal distribution, the
density function has its steepest slope
(approximately .24) at one standard
deviation from its mean, but half that
slope occurs at approximately 1.92 stan-
dard deviations from the distribution’s
mean, which corresponds to a 94.5%
probability range. Casual observers may
have an easier time perceiving not just
ranges with greater curvature, but ranges
where the slope of the density function
is neither too steep to make fine-grained
distinctions nor too flat to have much
experience with the data.

While it is well known that the nor-
mal curve's inflection point occurs at one
standard deviation from its mean, it is
less well known that the 90% and 95%
probability ranges roughly correspond
to the places of the density function's
maximum curvature and the midpoint of
its slope. These attributes of the second
derivative of the normal density func-
tion (which is the third derivative of the
cumulative density function) give rise to
testable implications.

Specifically, we hypothesized the fol-
lowing:

e The means of implicit standard devia-
tions of the probability ranges for
respondents who answer the 90% or
95% questions will be more accurate
than respondents answering the 50%,
75%, or 99% questions.

e The standard deviations of the
implicit standard deviations will be
lower for respondents answering the
90% or 95% questions than for those
answering the 50%, 75%, or 99%
questions.

e The implicit standard deviations of
the respondents answering the 50%
and 75% questions will be too high,
and the implicit standard deviations
of the respondents answering the
99% question will be too low.



Table |—Summary Statistics

Variable Obs. Mean | Std. Dev. Min Max
Respondent Age 519 223 7.0 10 61
Respondent Female 519 59.3% 0 I
Respondent Height (inches) 519 67.2 39 54 79.9
Respondent Location Quinnipiac (0=Yale) 519 41.0% 0 I

Together, these hypotheses are con-
sistent with the idea that people may be
hard-wired to more accurately infer the
90% or 95% distribution ranges from
their casual observations than other dis-
tribution ranges. The first hypothesis is
that the mean responses will be more
accurate, and the second hypothesis
is that there will be less variation in
the 90% and 95% responses. The third
hypothesis pushes the idea of hard-wired
responses even further by conjecturing
that people have a predisposition to give
the 90% and 95% answer, even when
they are asked different questions. Thus,
we hypothesize the ranges of heights
given as responses to the 99% question
will be biased downward toward the
95% answer, while the ranges of heights
given as responses to the 50% and 75%
questions will be biased upward toward
the 90% answer.

Even if our survey's data is consis-
tent with these hypotheses, our sim-
ple survey cannot distinguish between
“nature” and “nurture.” For example, it
is also possible that respondents could
be more successful at estimating the
95% confidence interval, not because
of a hardwired cognitive predisposition
concerning the shape of the Gaussian
distribution, but because the historic
ascendancy of the Fisherian standard of
statistical significance has conditioned
our respondents to more successfully
distinguish the 95% central mass from
its tails. But here is one place where the
pervasive statistical innumeracy of our
population may provide a small benefit,
as we find it unlikely that many of our
respondents would have more than a
passing acquaintance with traditional
standards of statistical significance.

Data Collection

In September 2005, we surveyed pass-
ersby at two Connecticut universities
(Quinnipiac and Yale) in places that
were designed to target primarily under-

graduate respondents. Potential respon-
dents were approached at a variety of
central campus locations, including the
entrance to libraries, gymnasiums, and
dining halls. They were asked if they
would answer four quick questions in
exchange for a Snickers bar. More than
90% of those asked agreed to participate.
Respondents who agreed to participate
were randomly assigned one of five ques-
tionnaires, which asked the following
question (varying only with regard to the
bracketed information):

The average height of women over
20 years old in the United States
is 5'4". Using just your intuition,
please give your best estimate of
the range of heights that would
include [50%, 75%, 90%, 95%,
or 99% ] of women over 20 years
old in the United States. Please
express your answer in feet and
inches. Please make sure that the

center of your range is the average
height of 5'4". Please fill in your
answer in the blanks just below
the figure.

This question was then followed by
a figure that graphically depicted a bell
curve and the cutoffs depicted in the
question. For example, the figure that
followed the 75% question is depicted in
Figure 2. The questionnaire then asked
the respondents to state their age, sex,
and height.

We received 519 complete sur-
veys. Less than 3% of the surveys were
discarded because they contained
incomplete or illegible responses. The
resulting sample was well-balanced
across treatments, with between 102 and
105 responses for each of the five treat-
ments. Table 1 provides some summary
statistics on respondent characteristics.
The bulk of our respondents (64% ) were
of college age (18-22); a majority of the
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Table 2—Analysis of Implicit Standard Deviations from Respondent Height Ranges for Five Specific

Treatment Types

Treatment A: Mean Size of B: Implicit C: Mean D: Standard Freq.
Height Range Number of of Implicit Deviation
(inches) Standard Standard of Implicit
Deviations Deviations Standard
within (A/B, inches) Deviations
Requested (inches)
Range
50% Question 5.89 1.35 4.37 2.6l 104
75% Question 7.49 2.30 3.26 2.54 104
90% Question 8.55 3.29 2.60 1.69 102
95% Question 8.90 3.92 2.27 1.28 104
99% Question 11.48 5.15 2.23 1.43 105
All Treatments 2.95 2.14 519

respondents were women; and a major-
ity of the responses were recorded at
Yale University.

Results

Our basic analysis of the respondents’
implicit standard deviations is con-
tained in Figure 3 and Table 2. We
found support for two of our three
hypotheses. As predicted by our first
hypothesis, the respondents most
accurately answered the 90% and 95%
questions. Indeed, the respondents
who answered the 90% question had
an average implicit standard devia-
tion that closely matched the stan-
dard deviation of adult women in the
United States—?2.6 inches.

The downward slope of the means
in Figure 3 also is consistent with our
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third hypothesis: the respondents’
height range responses would be biased
toward the 90% or 95% range. Table 2
shows the mean height ranges for the
50% and 75% questions were biased
upward (toward the 90%/95% range),
while the mean height-range answer to
the 99% question was biased downward
(toward the 90%/95% range). This is
consistent with a hard-wired predispo-
sition to answer with the 90% or 95%
range, regardless of the range actually
sought. This biasing in the reported
ranges caused the implicit standard
deviations to be too high for the 50%
and 75% questions and too small for the
99% question.

The test of our second hypothesis,
concerning the standard deviations of
our implicit standard deviations, was a
bit more mixed. The standard deviations
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of respondents’ implicit standard devia-
tions were, as predicted, smaller for the
95% question than for the 50%, 75%,
and 99% questions. And the standard
deviation of the respondents’ implicit
standard deviations was smaller for the
90% question than for the 50% and 75%
questions. But the standard deviation of
the respondents’ implicit standard devia-
tions was, contrary to our prediction,
larger for the 90% question than for the
99% question. Still, in five of six dyadic
comparisons, there was smaller disper-
sion in the implicit standard deviations
for the 90% and 95% questions than for
the 50%, 75%, and 99% questions.

To explore the statistical signifi-
cance of these findings, we regressed
the implicit standard deviation of each
response onto treatment dummies and
controls for respondent characteristics.
The results of two nested regression
specifications are reported in Table 3.
The first specification tests whether
treatment means (reported in Table 2)
for the 50%, 75%, 95%, and 99% ques-
tions are statistically different than the
treatment mean for the implicit stan-
dard deviation of the 90% question. As
shown in Table 3, the elevated implicit
standard deviations for the 50% and
75% questions were statistically dif-
ferent from that of the 90% omitted
treatment implicit standard deviation
(p. < .02). Moreover, an F test strongly
rejected (p. < .01) the hypothesis that
the five treatment means were jointly
equal. But the .37-inch shortfall of the
implicit standard deviation for the 99%
treatment question was not statistically



different (p. = .18) from the mean 90%
treatment response.

The second specification reported
in Table 3 adds controls for a variety
of respondent characteristics, including
sex, age, and location (Quinnipiac or
Yale). We added controls for not only
respondent height, but also for how
near the respondent’s height was to
the closest true requested height. We
hypothesized that a respondent whose
own height happened to be at one of the
two requested cutoffs for their treatment
might more easily observe the queried
proportion of women that was greater
or lower than him or herself, and, thus,
might be able to more accurately esti-
mate the requested range.

Finally, we added two controls for
both the raw and absolute difference
between the midpoint of the respon-
dent’s height range and the requested
midpoint of 64 inches. Even though
we asked respondents to center their
height ranges on the true population
mean height, only 46% of respondent
height ranges were exactly centered on
the population mean. But 80% of the
midpoints were within one inch of the
population mean. Moreover, the means
of the midpoints for each of the treat-
ments were less than .7-inches from the
population mean.

Our predictions about the ordi-
nal ranking of mean treatment effects
remained robust to the inclusion of
these additional regressors, as the coef-
ficients on the question-type dummies
monotonically decreased from positive
amounts for the 50% and 75% questions
to negative amounts for the 99% ques-
tion. All three coefficients were statisti-
cally significant (p. < .01).

Conclusion

The results of a single, small study can-
not persuasively establish that a cog-
nitive predisposition exists for better
‘seeing’ the kinked points in normal
distributions. This study tells us noth-
ing about other distributions, especially
asymmetric distributions that are preva-
lent in many of life's arenas. And even
with regard to approximately normal
distributions, this single study of adult
women's height may not be robust to
different respondents or questions.

Yet even when viewed as merely
suggestive, this study points toward a
number of implications. If our intuition

Table 3—Regression of Implicit Standard Deviations from Range
of Heights on Various Characteristics of Respondent and Treatment
Type (t-statistics in parentheses, p.<.05 in bold)

Spec. | Spec.2
Constant 2.599 2716
(13.18) (1.28)
50% Question 1.772 1.875
(6.38) (7.39)
75% Question 0.659 0.674
(2.37) (2.65)
95% Question -0.328 -0.341
—(1.18) —(1.35)
99% Question -0.371 -0.680
—(1.34) —(2.65)
Quinnipiac (Yale=0) -0.522
—(2.91)
Respondent Age -0.030
—-(2.42)
Respondent Female —-0.505
—(2.23)
Respondent Height (inches) 0.009
(:29)
Difference between Respondent Height 0.031
and Nearest Probability Cutoff (78)
Difference between Mean of Reported -0.134
Height Range and 64 Inches —2)
Absolute Difference between Mean of 0.713
Reported Height Range and 64 Inches (9.35)
Number of obs 519 519
Adj R-squared 13.5% 28.5%

is correct and it is easier to perceive
kinks in a probability density function,
then this suggests testable hypothe-
ses for non-normal distributions. Our
results also suggest that indirect ques-
tioning, properly analyzed, may elicit
more accurate information from casual
observers than direct questioning. For
example, if a lawyer were interested in
eliciting testimony from a witness about
a 50% (or 99%) probability range, she
might do better to ask the witness to
estimate the 90% or 95% probability

range and then infer an estimate of the
desired range based on the implicit
standard deviation.

Indeed, indirect questioning about
the 90% or 95% probability range
might even improve the ability to elicit
information about a distribution's mean.
In this study, we arbitrarily chose the
50% probability as our smallest treat-
ment range. But there is no reason why
we couldn't have asked respondents to
estimate the (centered) 40% or 10%
probability range. Indeed, the 0% prob-
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A Test within a Test

This study is a test of whether kids can be true collaborators on empirical social
science. Two of us are children. Anna was 8 and Henry was 10 (lan was 46)
when we collected and analyzed the data. Our hypothesis was that high school
students could—with the help of senior coauthors—conduct and publish serious
empirical studies.

Our inspiration was the résumé study of Marianne Bertrand and Sendhil Mul-
lainathan, in which the researchers responded to want ads in the Boston Globe and
Chicago Tribune with résumés that were identical, except that the authors of some
were randomly assigned “very African-American—sounding names” and others
were assigned “very white—sounding names.” It struck us that many high-school
students could have designed and completed this compelling project.

This paper supports our hypothesis. As grade-school children were able to pull
their weight on this study, it is surely the case that high-school students can be
substantively involved—at least as collaborators—in serious social science.

High-school students are not qualified to substantively contribute to most
high-level academic endeavors. Only the rare student can help with a theoretical
physics or English article. But high-school students with supervision can collect
and analyze important data. Contributing to the production of new information
need not wait until college or graduate school.

In the summers of 2004 and 2005, for 45 minutes a day, the coauthors studied
statistics together (with the heavy use of Excel). In the fall of 2005, Henry and
Anna, under the supervision of their parents, collected the data used in this paper
at the two universities. Having children make the request almost certainly increased
our response rate. Few people could resist the child's request: "For a Snicker's bar,
would you please answer four questions to help me on a statistics project?”

Anna and Henry entered the data into an Excel spreadsheet. They double-
checked the accuracy of their data, throwing out incomplete surveys and convert-
ing metric answers to feet and inches. They also analyzed the data, deriving the
implicit standard deviation of each response and estimating the numbers included
in all the tables. Additionally, they helped write the paper. In fact, Henry and Anna
dictated part of this sidebar to their dad: “We were strongly motivated to work
on this project by the prospect of getting our first family dog upon the paper's
acceptance. We have decided to name the dog (Pafnuty) Chebyshev.”

The contributions of the children—in collecting, entering, and analyzing the
data—easily met the generally recognized standards of coauthorship. But Anna
and Henry did not generate the hypotheses and did not contribute greatly to the
design of the specific test. It thus remains an open question whether high-school
students (or younger) can come up with interesting, testable hypotheses. But
even here we suspect high-school students could contribute substantively to the
process of identifying interesting, testable questions.

Indeed, the possibility that people know the 95% probability range better than
the mean came directly from the following colloquy between father and daughter.
While on a hike, lan asked Anna how many times in her life she had climbed the
Sleeping Giant Trail. Anna replied, “Six times.” lan then asked what the standard
deviation of her estimate was. Anna replied, “Two times."” But then she paused and
said, "l want to revise my mean to eight.” During that pause, Anna realized she
had implicitly told her father that there was a 95% chance that she had climbed
Sleeping Giant between two and 10 times, yet on reflection, she knew she had
climbed it more than two times.

Anna could have resolved the contradiction by lowering her standard deviation
estimate, but she felt it was more accurate to increase her estimate of the mean.
It was this conversation that led us to hypothesize that people may, at times,
have a more accurate knowledge of the 95% range than they do of the mean. If
you want to elicit more accurate estimates of a mean, you might (at least with
regard to normally distributed distributions) want to ask people to identify the
95% probability range. This is an interesting, testable hypothesis that Anna and
[an jointly generated.
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ability range is identical to the mean.
Our intuition suggests people might
be able to more accurately estimate the
95% probability range than the mean.
Instead of asking people to estimate
the average man's height, we might do
better to ask them to estimate the 95%
probability range and infer the mean
from the range's midpoint.

We are in the process of gathering fur-
ther analogous data from a self-selected
group of internet users under the aus-
pices of the Yale School of Management
elLab, which will allow us to further test
the robustness of these results. Data
from both this study and from these fur-
ther eLab experiments will be available
at www.law.yale.edu/ayres.
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