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ABSTRACT

A “higher-order” liability regime—in which a plaintiff and a defendant have a se-
quence of alternating options to take a disputed entitlement—can enhance allocative
efficiency by harnessing the private information possessed by both litigants. Indeed, in-
finite order liability regimes can, as a theoretical matter, assure first-best efficiency. Such
iterated taking regimes have, however, been criticized as (i) generating excessive (and
debilitating) taking costs, and (ii) being infeasible with regard to intangible entitlements.
This Paper shows that courts can replicate the first-best efficiency of infinite-stage liabil-
ity rule via an instantaneous auction mechanism. This instantaneous mechanism avoids
the excessive taking cost criticism (because the disputants merely submit a single report
of value). Unlike many auctions, the mechanism also allows courts to pursue equitable
goals by dividing the bulk of expected gains to either plaintiff or defendant (without
undermining the first-best allocative efficiency). A derivation is given of the explicit
formula for the basic element of the procedure, which we call the “damage curve” and
which determines the amount of damages that the winner of the auction must pay the
loser. This formula holds for arbitrary joint probability distributions of the valuations
of the asset, whether correlated or uncorrelated. Explicit damage curves are calculated
for several concrete examples, illustrating both correlated and uncorrelated cases.

I. Introductory remarks and basic concepts

Kaplow and Shavell*—formalizing Calabresi and Melamed®—showed that “liability rules” can

harness the private information of a potential taker to enhance allocative efficiency. For example,
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when nuisance damages are set at the expected value of the pollutee (takee) a potential polluter

(taker) will be induced to take only if she expects that the taking would enhance efficiency.

But while simple liability rules can do a better job at economizing on the private information of
potential takers than property rules can, Ayres and Balkin® pointed out that they fail to harness the
private information of the other side of the dispute. Ayres and Goldbart”showed that that giving
the disputants a sequence of alternating options to take a disputed entitlement at successively
increasing court ordered damages could even better enhance allocative efficiency by harnessing
the private information of both parties. This “higher order” liability rule resembled an auction in
which each successive taking amounted to a bid signaling a higher private value. And indeed, a
potentially infinite sequence of takings could, in theory, just like a traditional auction, produce
first-best allocative efficiency—with the disputed entitlement always being allocated to the higher
valuer.

But, unlike traditional auctions, where the winning bidder pays a third party (the seller), this
regime represented an internal auction, in which the winning bidder paid the losing bidder. Ayres
and Goldbart® showed how this internal auction feature enhanced the distributional flexibility of
courts to respect the equitable claims of the polutee or the polluter (or enhance ez ante investment
incentives). Indeed, it is possible to construct a higher-order liability rule so as to maintain first-best
allocative efficiency and divide the expected value of the entitlement between the disputants as the
court sees fit.

While infinite staged higher-order liability rules thus have attractive theoretical properties,
they have been criticized as being impractical. Kaplow and Shavell? point out that iterated taking
regimes might (i) generate excessive (and debilitating) taking costs and (ii) be infeasible with regard

to intangible entitlements.

The present article advances the ball by showing that it is possible to implement an infinite-
stage liability rule with an instantaneous procedure that avoids the takings problems identified
by Kaplow and Shavell. Moreover, our procedure achieves first-best efficiency in a model without
any possibility of consensual trade. Ours is a direct mechanism in which the disputants are asked
to report how much they value the entitlement to the court, with knowledge that the court will
(i) allocate the entitlement to the disputant submitting the higher report and (ii) assess damages

according to a pre-specified damage curve (that is a function of both disputant’s reports).

We show that there exists an equilibrium in which disputants report their true values and the
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entitlement is accordingly allocated by the court to the first-best valuer. We present a derivation
of the explicit formula for the core feature of the procedure, what we call the “damage curve”,
which determines the amount of damages that the winner of the auction must pay the loser. This
formula holds for arbitrary joint probability distributions of the valuations of the asset, whether
correlated or uncorrelated. We calculate explicit damage curves for several concrete (correlated and
uncorrelated) examples.

There are of course other auction mechanisms that could also achieve first-best allocative effi-
ciency. For example, the government could (i) exercise its eminent domain option over the disputed
entitlement (paying the exr ante expected value of the entitlement to one of the disputants), and
then (ii) auction the entitlement to the highest bidder (with the government keeping the revenues
of the auction). But the government knows more about the value of the entitlement at the end of
the auction than at the beginning, because the very process of bidding reveals information about
the disputants’ private valuations. Accordingly, an advantage of our proposal over other auction
mechanisms is that it allows more nuanced divisions of the entitlement’s ultimate value between the
disputants.

A. Review of liability rules

The aim of the present subsection is to introduce the reader to the “taxonomy” of liability rules:
the traditional ones, as well as those proposed in the literature prior to the present work. Although
the liability rules that we shall review in the present section certainly improve upon the allocative
efficiency of the property rules, they do not yield perfect efficiency. The issue of how courts may
apply judicial rulings that yield perfect efficiency by harnessing privately held information—the
central mission of this Paper—is discussed in section 11l. The analysis of efficiency of liability rules
reviewed in the present section is beyond the scope of the present Paper. The interested reader is
referred to a companion Paper!? as well as prior work of Ayres and Goldbart.!!

1. Traditional property and lability rules

We start off by examining the traditional property and liability rules. The insightful observation
of Calabresi and Melamed was that the rules can be categorized via (a) the holder of the initial
entitlement to the asset (the plaintiff or the defendant), and (b) the type of rule (property or
liability). We now list their specific examples:

195, Knysh, P.M. Goldbart and 1. Ayres, Design of Efficient Legal Liability Rules:

Comparison of Discrete Vanilla and Erotic Variants.
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Injunctive relief (Rule 1) The plaintiff gets the initial entitlement to the asset; the rule is of the
property type.

Injunction denied (Rule 3) The defendant gets the initial entitlement to the asset; the rule is
of the property type.

Compensatory damages (Rule 2) The plaintiff gets the initial entitlement but the defendant
receives a call option—a right to acquire the asset by paying damages. The rule is of the
liability (call) type.

Rule 4 The defendant gets the initial entitlement but the plaintiff receives a call option. The rule
is of the liability (call) type.'?

The original categorization of Calabresi and Melamed is augmented with another type of rule, in
which the forced sale (a call option) is replaced with a forced purchase (a put option). The choice

of terminology again comes from finance. We summarize these rules in a 2x3 extended Calabresi-
Melamed Table.!

Initial Entitlement H Property Rule | Liability Rule (Call) ‘ Liability Rule (Put) ‘

Plaintiff Rule 1 Rule 2 Rule 6
Defendant Rule 3 Rule 4 Rule 5

Table 1: Extended Calabresi-Melamed table of rules.

As a final example, we mention Rule 6, which grants the plaintiff both the initial entitlement
and the put option—the right to demand damages instead of the asset. Rule 5 is unlikely to be used,
except potentially in a coming to the nuisance setting. It is, nonetheless, included for completeness.

In another invocation of the standard financial terminology, we shall call Rules 1-6 “vanilla”
rules (cf. futures, call and put options in finance); the other, more complicated, types of rules shall
be termed “exotic? Having dealt with the vanilla rules we move on to discuss their exotic variants.

2. Frotic liability rules

In the present section we shall list the exotic rules proposed elsewhere, and give a brief descrip-
tion of them.'*

"?Spur Indus., Inc. v. Del E. Webb Dev. Co., 494 P.2d 700, 708 (Ariz. 1972).
3lan Ayres, The 1998 Monsanto Lecture: Protecting Property with Puts, 32 Val. U. Rev. 793 (1998).
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Double Call The plaintiff gets the initial entitlement. The defendant gets a call option—the
right to buy the asset for Da. The plaintiff can prevent this by paying D, which can be
thought of as the plaintiff having a call-back option. A second type of double-call rule is
obtained by interchanging the roles of plaintiff and defendant. Note that the last chooser—
the plaintiff—will exercise his option if Vi1 > Q@ = Da + Dn. However, the first chooser—the
defendant—must solve a slightly more complicated problem in order to determine whether to
exercise his option. The pivot value Q4 (i.e. the amount such that the defendant exercises his
option only if Vo > Qa) is somewhat smaller than the damages: @a < Da. This amounts
to strategic underbidding, i.e., the exercising of the option for a loss, in the hope of reaping
higher rewards, should the opponent exercise the call-back option.

Double Put The plaintiff gets the initial entitlement and a put option—the right to sell the asset
for Dp. The defendant can prevent the forced transfer by paying Da < Dy, which can be
thought of as a put-back option.

Joint Veto The asset stays with the initial asset holder, with no damages being paid unless both
litigants agree to transfer the asset for damages D. This rule can be viewed in two equivalent
ways: as a special case of either (a) the Double-Call rule, or (b) the Double-Put rule, in both
cases the second damages (i.e. the damages paid to prevent transfer) being set to zero. Note
that no strategic underbidding takes place in this case.

3. Generalization to higher-order rules

This section describes and generalizes the notion of higher-order liability rules—which represent
a sequence of alternating taking options (iterated call rules) or alternating giving options (iterated

put rules).

Iterated Call Imagine that one of the disputants (without loss of generality) called “plaintiff” gets
the initial entitlement. In the first stage, the defendant gets the initial option of buying the
asset for D). The plaintiff gets the option of preventing this transfer by paying Dj. In
the second stage, the defendant has the option of responding by increasing his bid to D3,
in response to which the plaintiff can again prevent transfer by increasing his offer to Dj.
This process continues for up to n stages, the n-stage game being fully described by the two

sequences of damages:

D\ < DY <. < DR, (I.1a)
Dy < Df < -+ < Df. (I.1b)
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Iterated Put An alternative higher-order liability rule entails a potential sequence of being given
put options. Again imagine that the plaintiff get the initial entitlement. The plaintiff also
gets the initial option to forcefully transfer the asset to the defendant and to receive damages
DL. The defendant can prevent transfer by paying DX. In response, the plaintiff can lower

1 & YA
the damages he is to receive to D, and the defendant can, in turn, prevent transfer by paying
D3. The n-stage game is fully described by the two sequences of damages

Dfy > D > -+ > Dy, (1.2a)
DA < DX <---<DjX. (1.2b)

Having reviewed the vanilla and exotic options that have been explored to date, we now turn to
the main focuses of the present Paper, viz., the development of more powerful liability rules and an
analysis of them in game-theoretic terms.

II. Extension to continuous rules

The purpose of this section is to explain in detail a family of liability rules that are yet more
exotic than those considered in the previous section and that have the important virtues of (a) con-
taining the rules of the previous section as simple special cases, and (b) being capable, by appropriate
tuning of the parameters, of achieving perfect efficiency. In addition to formulating these rules, we
shall explore a number of illustrative examples. In the following section we shall examine the new
rules from a game-theoretic perspective; and in the concluding section of the Paper, we shall, among
other things, draw analogies between these new rules and the familiar topic of auctions.

A. Continuous call rule

Let us examine more closely the iterated call rule. It will prove convenient to make a slight
change of language here. We wish to refer to the exercising of an option as the making of a bid,
and to the corresponding damages as the amount of the bid. T'wo factors distinguish this notion
of bidding from the conventional one. First, the permitted bid amounts are drawn from a discrete
set, which is specified by the court. And second, whereas in conventional bidding any bid must
exceed the opponent’s previous bid, in the present setting a litigant’s bid must exceed only his own
previous one. Stated mathematically, the set of interlaced conditions

0< D\ <Dy <Di<Di< <D} <Dy, (11.1)

5

'5We simply rewrite Fgs. (I.1a) and (I.1b).



0< D)< DX << DR, (11.2a)
0< Dy <D <---< Dfy. (11.2b)

Let us now make a natural generalization of this scheme. We take the limit n — 00, so that the
increments of the bid amounts, { DfF' — DE} and { DT — DX}, become infinitesimal quantities. It
is convenient (and always possible) to view the damages { D&} and {DX} as the values of a pair of
continuous damages functions Dri(s) and Da(s), evaluated at the arguments {s* = (k — 1)/n}. In
order to meet the conditions that the pair of discrete sequences of damages { Dk} and {DX} each
be strictly monotonically increasing, we shall require that the derivatives of the damages functions
obey Df(s) > 0 and D/, (s) > 0, where the prime indicates a derivative.

As another slight change of language, we shall refer to the arguments of the damages functions
{s*} as the bids, rather than the actual values of the damages functions at these arguments. We shall
refer to the latter as bid amounts. As, in the continuous (i.e. n — oo) limit, the bid increments s*+1 —
s¥ (= 1/n) tend to zero, the bids are drawn from the continuous interval [0; 1). The convenience
of this focus on the bid s [rather than the bid amounts Dr(s) and Da(s)] lies in the intuitiveness
of the notion that it is the highest bid that wins (i.e. ends up with the asset). To emphasize this
point, consider a situation in which a plaintiff and a defendant respectively make bids sip and sa,
with s > sa. Then the plaintiff’s bid is the winning bid, even though it perfectly well may happen

that DH(SH) < DA(SA).

In setting up the continuum generalization of the iterated call rule, we shall be introducing three
conceptual steps. First, we propose that the procedure in which the explicit bids and counter-bids
are made is replaced by one in which the bids (still drawn from the discrete set {s*}) are announced
by the court. Second, noting that bid increments tend to zero, we may assume that the current
bid, represented by the number s, increases from zero to one, continuously with time. Third, we
entirely eliminate the explicit bidding involved, by requiring the parties simply to secretly submit
their final bids to the court.

In the scheme that follows from making the first step, the bids are announced sequentially, one
by one, starting with the smallest bid of zero. At each step, there are three possible outcomes:
(i) the defendant folds [i.e. allows the plaintiff to control the asset in exchange for the previously
announced damages Dy (s*~1)]'6; (i) the defendant stays but the plaintiff folds [i.e. allows the
defendant to control the asset in exchange for the damages Da(s*)]; (iii) both defendant and
plaintiff stay [i.e. that, to control the asset, the defendant is willing to pay the bid amount D (s*)
and the plaintiff is willing to pay the bid amount Dp (sk)], in which case the next bid is announced.
If either (i) or (ii) is realized then the procedure stops, the asset is transferred accordingly, and the

'“We may take Dr(s°) = 0, which means that the asset simply stays with the plaintiff if the defendant chooses not

to exercise his first option.



appropriate damages are paid.

Upon making the second step, in which we imagine letting the bid rise from zero to one,
continuously in time, the litigants need only to indicate, at some time, their desire to fold. In the
(unlikely) event of the litigants folding simultaneously, priority is given to the defendant (i.e. the
defendant is taken to be the party who has folded first).

In the third, and final, step we observe that neither party has received any useful information
until the bidding ends with one or other party being the winner. Thus, the parties know their
maximum bids before bidding has commenced. And, thus, the entire bidding procedure can be
dispensed with in favor of a procedure in which the parties simply furnish the court with their
maximum bids. The court can use this information to immediately ascertain which party is the
winner, as well as the amount of the winning bid!”. The bidding stops when s reaches the smaller
of the two secret bids, sg and sa. Therefore, the party that made the highest bid is the winner.
The damages are determined, however, by the loser’s bid, as this is the bid at which the bidding
stops.

It remains to mention that the restriction that s lie in the interval [0;1) is quite arbitrary:
the essentials of the problem are invariant with respect to arbitrary reparametrization. That is,
for any monotonically increasing function of s, say t(s), one equivalently can work with functions
Dr(t) = Dr(t(s)) and Da(t) = Da(t(s)). In the resulting scheme, the players should choose
their bids to be t;j = t(si) and ta = t(sa), where s;p and sa would be their bids under the old
scheme. As t(s) is monotonically increasing, the winner remains the same; the amount of damages
paid, as determined by the lower bid, would similarly be unchanged. If one takes, for instance,
t(s) =t/(1 —t), the domain of damages functions would be mapped from the interval [0;1) into the

entire positive real axis [0;+00).

The final version of the bidding procedure admits an appealing geometric interpretation, which
we now explain. The damages functions Dyy(s) and Da(s) define, parametrically, a curve in the
(Dm, Da) plane (see figure 1). The positivity of Dp;(s) and D’y (s) implies that the tangent to the
curve always points towards the positive quadrant (i.e. angles from 0° to 90°). The bids correspond
to points on this curve, the higher bid being the point lying further along the curve (in the direction
of increasing damages). The damages are determined by projecting the point for the losing bid on to
the D axis (if the plaintiff is the winner) or on to the Da axis (if the defendant is the winner). This
geometric reinterpretation illuminates the reparametrization freedom: the pairs { Dri(s), Da(s)} and
{5H(t), 5A(t)} define the same curve.

A popular web auction eBay(tm) has a system called prozy bidding, which lets users indicate their maximum bid
(which is kept private), and simulates the bidding process by bidding incrementally on behalf of each user up to his
maximum bid.



Fig. 1.— An example of the parametrically defined bidding curve. The damages paid are obtained
by projecting the lower bid onto Il- or A-axis.

B. Continuous put rule

We now examine the continuous put rule. Recall that the iterated put is characterized by the
sets of damages Df; > D& > -+ > Dj and D\ < D5 < -+ < D%."®We proceed to define damages
functions Dr(s) and Da(s) that satisfy Dp(s*) = =D& and Da(s*) = Df;. This definition may
seem peculiar, however it represents the fact that whoever ends up with the asset pays damages
D, (s), where o stands for either IT or A. Indeed, if the plaintiff exercises his option, the defendant
(A) ends up with the asset and pays DE = Da(s*). If the defendant exercises his put-back option,
the plaintiff receives the asset and DZ in damages (or, equivalently, pays the negative amount
—D% = Dn(s*) in damages). For the continuous put rule we prefer to define s* = (n —1-k)/n, so
that one still has Dp(s) > 0 and D/, (s) > 0, but now, during the bidding, s decreases from 1 to 0.
We now consider the last (and somewhat tricky) step: in contrast to the continuous put case, the
asset ends up in the hands of the party who refused to continue the bidding, i.e., did not exercise
his put option.

In constructing the generalized continuous put rule, we again make three revisions of the bidding
game. In the first revision, the bids are announced by the court, and the litigants announce whether
they are willing to exercise their put options. Should one of them refuse, he becomes the owner
of the asset and pays damages determined by the current bid. If both refuse, priority is given
to the initial asset holder (the plaintiff). The second revision lets the bid decrease continuously

from 1 to 0, until one of the litigants announces his intention to take the asset. The damages are

18See Fgs. (I.2a) and (1.2b).
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determined by the current bid. In the final revision, the litigants submit their secret taking bids.
The court then assigns the asset to the party with the higher bid. The damages are determined
by the winning bid, unlike the situation in continuous call rule, in which the losing bid is used to
calculate the damages. The difference between the continuous call and the continuous put rules is
that the former favors strategic overbidding whereas the latter favors strategic underbidding. The
continuous put also admits a geometric interpretation: the winning bid (the point further along the
curve) determines the winner, and its projection onto either the Dy or the DA axis determines the
damages exchanged. Similarly to the continuous call case, a reparametrization can be used to relax
the condition that s lie in the interval [0;1). Note that it is more convenient and slightly more
general to relax another constraint—that Drr(s) < 0.

C. Determining optimal strategies

The model that we consider throughout the Paper is the familiar one in which the plaintiff and
defendant each possess an element of private information—the value that they place on a right (or
asset, as we shall commonly refer to it) that is under dispute. These private valuations are denoted
Vi1 and V for the plaintiff and defendant, respectively; we assume that they are random variables!?
distributed according to a joint probability distribution (j.p.d.) which we denote f(Vi1, Va). This
distribution is assumed to be public knowledge:?° it is known to the plaintiff, to the defendant, and
to the court. We shall say that the private valuations are uncorrelated if the j.p.d. is factorizable, i.e.,
if f(Vir,Va) = fu(Vi) fa(Va). Otherwise, we shall say that the private valuations are correlated.

For the correlated case, we shall also make use of the conditional probability densities:

fu(ValVa) = fu(Vi, VA)/fd:v fu(z, Va) and similarly for fa (Va|Vi).

1. Continuous call rule

In the present section we assume that s and sa are, respectively, the bids submitted by the
plaintiff and the defendant (referred to in this section as the players I and A). In addition to
conditional probability distributions fr(Vi|Va) and fa(Va|Vir), we shall make use of cumulative
distributions, denoted by symbol F', e.g.,

'%This assumption should not be taken too literally. It simply means that the public has incomplete information,

and that a probability distribution is being used to represent their beliefs.

2OThis is what is often meant by first-order beliefs. More precisely, first-order beliefs correspond to the uncorrelated
case, i.e. fu(Vn) and fa(Va) being separately known. The correlated j.p.d. cannot be described by first-order beliefs
alone due to the fact that e.g. defendant’s belief about the distribution of plaintiff’s valuations depends on his own
valuation, and, therefore is not known to others. The correlated example is the simplest one to go beyond first-order

beliefs; and yet it renders calculations analytically tractable.
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Va

FAa(ValVn) = ; fa(v|Vi) dv. (11.3)
Now, each player is faced with the problem of making the optimal bid, given his private valua-
tion of the asset. In doing so, he must have some knowledge of other player’s intentions, i.e., other
player’s strategy. Therefore, we should end up with a pair of coupled equations for the strategies.
Also note that in contrast to games with complete information, in which the strategy is essentially a
number (the actual bid), under incomplete information the strategy should be defined as a function
that maps players’ internal valuations into bids: sp(Viy) and sa(Va)?'. We shall, in fact, work
with the inverses of these functions, viz., Vi1(s) and Va(s)?*. We shall also use the latter to define
the distributions fn(s) = fm(Vn(s)) V{i(s) and Ia (s) = fa(Va(s)) VA(s), which are then the prob-
ability distributions of the actual bids. We also define the corresponding conditional probability

distributions fii(s|Va) and fa(s|Vi1) and their cumulative versions, Fi(s|Va) and Fa (s|Vi).

If II’s internal valuation is Vi, his bid s(Vi1) is determined so as to maximize his payoff. In
this maximization he assumes that A follows his optimal strategy sa(Va). As Il does not know A’s
private valuation Va, he maximizes his expected payoff under the condition that VA is randomly
distributed according to fa(Va|Vir). Then A’s private valuation does not influence I1’s payoff,
except through A’s bid. Equivalently, 11 works with the distribution of A’s bids, fAA(s|VH).

We now proceed to implement the determination of optimal strategies outlined in the previous
paragraph. After the plaintiff and the defendant have submitted their secret bids, s;p and sa, the
asset goes the higher bidder at damages determined by the lower bidder. Therefore, the plaintiff’s
and the defendant’s respective payoffs, 7r1 and 7, are given by

Vit — Dn(sa), if sgp > sa,

mu(sm, salVin Va) = { HDA(:H() 2) o SE P Si (I1.4a)
Drn(sa),  if sm > sa,

= I1.4b

ma (6, 5a[Vin, Va) { Va = Da(sn), if s < sa. (T1.4b)

Taking into account the probabilities of private valuations, we can write down the expressions for
the expected payoffs:

mn(sn|Vin) = /OSH dsa [Vir = Du(sa)lfa(salVin) + Da(su)[1 = Fa(sn|Vi)l, — (11.5a)

ma(salVa) = /OSA dsti [Va — Da(sm)]fr(sm|Va) + Dr(sa)[l — Fri(salVa)]l.  (IL5b)

2'We thus ignore the possibility of mixed strategies.

22The inverses exist as long as SH(VH) and SA(VA) are monotonic, and we shall assume that they are.
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Here, mri(sm|Vi) has the meaning of I1’s expected payoff, given that his valuation is Vi1 and his bid
is si; and similarly for wa (sa|Va). The players follow their optimal strategies, i.e., they maximize
their individual payoffs with respect to their individual bids. Thus, the bids obey the stationarity
condition:

d d
EFH(SHH/H) = ET&'A(SAH/A) =0. (T1.6)

Inserting the explicit expressions for the expected payoffs Eqs. (I1.5a) and (I1.5b) leads to the
conditions:

[Vir(sn) — Dri(sm))fa(sn|Vi) + D (sm)[1 = Fa(su|Vi)] = Da(sn) fa(snlVn) = 0, (I1.7a)

[Va(sa) = Da(sa)lfri(salVa) + Dii(sa)ll = Fiu(salVa)] = Dn(sn) fu(salVa) = 0,(IL7b)

which, upon rearrangement, may be written as the following set of conditions:

Di(s) = An(s|Va(s)[Pn(s) + Da(s) = Va(s)], (I1.8a)
Dix(s) = Xals|Va(s)[Pr(s) + Da(s) = Va(s)], (I1.8b)

the coefficients A and Aa in the conditions being defined via

An(s|Va) = JFu(s|Va) /[1—ﬁn(s|vA)], (11.8¢)
Aa(slVi) = FalslVin) /11 = Fa(slvin)] (11.8d)

In principle, conditions (I1.8c) and (I1.8d) should, for a given pair of damages functions Dry(s)
and Da(s), be solved for the (inverse) bidding strategy functions. This appears to be a formidable
task, as the equations are, in general, non-linear [the non-linearity coming from the dependence of
Am and Aa on Vi(s) and Va(s)]. However, for reasons that we shall explain in section 111, a less
demanding route is available and, in fact, appropriate.

2. Continuous put rule

We now examine the continuous put rule. The only difference from the continuous call case is

that the damages are determined by the winning bid. Accordingly, we have the expected payoffs:
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7TH(81‘[|VH) = [VH — DH(SH)]ﬁA(3H|‘/H) + /OO dsa DA(SA)fA(SAlvn), (II.Qa)
ra(salVa) = [Va = Da(sa)]Fi(salVa) + / " dsn Du(sm) fu(snlVa),  (11.9b)

and, again, construct stationarity conditions: (d/dsn)mn(sn|Vir) = (d/dsa)ma(salVa) = 0. By
substituting the explicit expressions for the expected payoffs, stationarity conditions can be written
in the following form:

—Dir(sn) Fa(sulVin) + [Via(sn) = Du(sn) = Da(sn)lfa(snlVi) = 0, (11.10a)
— D' (sa) Fii(sa|Va) + [Va(sa) = Da(sa) — Da(sa)]fu(salVa) = 0. (11.10b)

We can recast this conditions into a form similar to that of Eqgs. (I1.8a) and (11.8b),

Du(s) = na(sVn(s)[Var(s) — D(s) — Da(s)], (IL.11a)
Dr(s) = nun(slVa(s)[Va(s) = Du(s) = Da(s)], (IL.11b)

where we have introduced

pn(s|Va) = fn(sm)/ﬁn(sm), (IL.11c)
palslVin) = Faslvin) /Pa(slvin). (I1.11d)

D. Recovering the discrete rules

We have seen that when the asset-allocation decision is delegated to the litigants the economic
efficiency of the allocation is increased by a suitable choice of the damages in a vanilla call or put
regime. Work on exotic liability rules has been sparked by the sense that efficiency would be further
increased if the litigants were to have the greater freedom offered by iterated call or put regimes,
and the court were to have at its disposal the correspondingly greater number of adjustable damages
parameters—infinitely many in the continuous call and put cases.

Let us put these arguments on a firmer basis. It has been argued that the vanilla call is, in
general, more efficient than the property rule, as the property rule can be thought of as vanilla
call with damages D set to infinity. Barring the exceptional possibility that the total efficiency is
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independent of D, a liability call rule can always be made more efficient than a property rule by
a better choice of D. As we shall now explain, the continuous call rule is more efficient than the
iterated call, provided that the iterated call can be shown to follow from the continuous version with
appropriately chosen parameters. This is indeed possible if the damages curve of the continuous

version is chosen to have a zigzag shape, as shown in figure 2.

AA

[l

| |

]
T T T
1 2 3
DL D2 D}

Fig. 2.— A continuous rule bidding curve that simulates a 3-stage iterated call rule.

With this zigzag shaped damages curve, the plaintiff should only bid at corners at which the
zigzag curve turns right, and the defendant should only bid at corners where the curve turns left
(or at the point at the origin, or infinitely far away). To be precise, we will show that if one of the
players would use the strategies from this subgame (i.e. bidding only in corners), the other player
gains no advantage by deviating from the subgame, i.e. by bidding away from corners. Indeed, if
the defendant decides to place a bid somewhere on a horizontal segment, he would simply increase
the amount of damages he receives if he loses by moving his bid point to the right. If he decides
to bid somewhere on a vertical segment, he is indifferent where to place his bid, but it is safer to
move down, thereby decreasing the damages he might have to pay (without changing the damages
he might receive), should the plaintiff decide to play away from corner. This shows the sought
reduction from the continuous call to the discrete iterated call. Similar reasoning can be used to
relate the continuous put and the discrete iterated put rules. We refer the reader to the A for a
table of damage functions used to simulate each of the liability rules described in the Introduction.

E. Connections with auctions

The procedure we have described in this chapter has much in common with familiar auctions. In
the case of auctions, the relative of our iterated call is the increasing price, or English, auction. The
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iterated put, in turn, corresponds to the decreasing price, or Dutch, auction. Arguments similar to
the ones we have made (in going from the infinitesimal bid increments to “sealed envelope” bidding)
led Vickrey?® to propose replacing English auctions with the so-called Vickrey, or second-best,
auction, and to replace the Dutch auction with the first-best auction. In both Vickrey and first-best
auctions, the bidders secretly submit their bids. The highest bid becomes the winner at the price
determined by the second-highest (Vickrey) or the highest (first-best) bid. The analogy ends here,
because in our formulation, the damages paid, do not, in general, correspond to the real bids. The
importance of the Vickrey auction is in that the bidders bid according to their private valuations,
whereas in first-best auctions, they tend to strategically underbid. In contrast, in our scheme, the
bid amounts under the iterated put rule reflects strategic underbidding, whilst strategic overbidding

features under the iterated call rule.

ITT. Designing Optimal Mechanism
A. Formulation

The task of designing an optimal mechanism can be split into two parts. The first part involves
finding optimal bidding strategies given a set of damage parameters. The second part involves
maximizing total expected efficiency by adjusting these parameters. For the continuous call or put
rules the strategy is synonymous with submitting a bid, and the set of parameters corresponds to
the damages functions Dr(s) and Da(s). The problem of determining the optimal bid, given Dy(s)
and Da(s), was addressed and solved (at least formally) in the previous section. Approaching the
second part of the problem (i.e. the maximization of total expected utility), we note that for the
first-best allocation (i.e. a mechanism whereby the party with the higher private valuation always
gains control of the asset) the total expected efficiency achieves its optimal value. As we shall
now see, a model in which the set of parameters corresponds to the pair of continuous functions is
sufficiently rich to achieve first-best allocational efficiency. Any other mechanism will be, at best,

only as efficient, not more so.

Under both the continuous call and the continuous put rules, the asset is allocated to the
party with the higher bid, i.e. to the plaintiff if s;; > sa and to the defendant if sg < sp. On
the other hand, for optimal allocation we must have that the asset is allocated to the plaintiff if
Vii(sm) > Va(sa) and to the defendant if Viy(si) < Va(sa). A moment’s reflection will show that
these conditions are compatible if and only if Vi1(s) = Va(s). On the other hand, we observed
124

that the game is invariant® with respect to the reparametrization of Dp(s) and Da(s) via any

monotonically increasing function #(s). Assuming that there exists a mechanism [i.e. functions

22William Vickrey, Counterspeculation, Auctions and Competitive Sealed Tenders, 16 J. Finance 8 (1961).

21To be precise, the term covariant should be used, as the calculated bids should be adjusted according to the

reparametrization.
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Dr(s) and Da(s)] that guarantee Vii(s) = Va(s), by choosing ¢t = Vii(s) = Va(s) as the new
parameter, the mechanism can be reformulated via Dyj(¢) and Da(f) so that Vii(t) = Va(t) =t.

We now substitute Vii(s) = s and Va(s) = s into the equations Eqs. (I1.8a) and (IL.8b) of
section C for the optimal bids so that Dri(s) and Da(s) are viewed as the unknowns rather than
parameters:

Call ‘ Put
Diy(s) = An(s|Va = )[Dn(s) + Da(s) = s] | Dy(s) = pa(s|Vir = s)[s — Dn(s) — Da(s)]
Dy (s) = Aa(s[Vit = s)[Du(s) + Da(s) = s] | Dy(s) = pu(s|Va = s)[s — Du(s) — Da(s)]

Table 2: Differential equations for damages functions.

Litigants, furnished with Dri(s), Da(s) that solve these equations, would apply the rationale
of section C, and in so doing would discover that their optimal strategies are Vi(s) = Va(s) = s.
Therefore, in making their bids, they would be forced to reveal their private valuations. By virtue of
the fact that the asset is allocated to the higher bidder, first-best allocational efficiency is realized.

A special note should be made about the boundary conditions obeyed by the damages functions.
To ensure that the equations of Table 2 have non-singular solutions, the following conditions must
be met?®:

Call | Put
DH(SmaX) + DA(SmaX) = Smax ‘ DH(Smin) + Da (Smin) = Smin

Table 3: Boundary conditions for damages functions.

We now address the task of actually solving for the damages functions, given the optimal
strategies Vir(s) = Va(s) = s. To do this, we first introduce the auxiliary function D(s) = Dn(s) +
Da(s). As seen by adding together the differential equations of Table 2, 5(8) obeys a certain
ordinary differential equation, depending on whether we are considering the continuous call rule or
the continuous put rule:

Call ‘ Put
5(5) = \)D() — o] | D) = (o)l — Do)
D(Smax) = Smax D(Smin) = Smin

Table 4: Equations for 5(3) together with boundary conditions.

where A(s) = An(s|Va = s) + Aa(s|Vin = s) and p(s) = un(s|Va = s) + pa(s|Vim = s); the
quantities Am, Aa, pr1, a have been defined in section C. The stated boundary conditions on D

25We introduce the following notation: $max is the smallest s such that f(tn7 tA) = 0 for all tr,ta > s; similarly,
Smin is the largest s such that f(tm,ta) =0 for all tr, ta < s.
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follow from those given above for Dr(s) and Da(s). Note that, owing to the linear, first-order
form of the equation obeyed by 5, the method of integrating factors presents us with an explicit
solution in terms of the functions A(s) or p(s), which encode information about the joint probability
distribution f(Vi1, Va). Note that this distribution may be arbitrarily correlated.

Armed with the solution for 5(3), we may return to one or other of the differential equations,
for Dri(s) or for Da(s), eliminate the sum Dr(s) + Da(s) on the right hand side in favor of D(s),
and integrate to obtain Dr(s) and Da(s).

Note, that Dri(s) and Da(s) are determined only up to a single constant of integration, as they
should be. If a pair {Dr(s), Da(s)} is a solution, then so is the pair {Dp(s) + A, Da(s) — A}.

As in Ayres & Goldbart (20xx) it is possible for courts to decouple distributional and allocative
concerns in that there is a family of allocatively equivalent damage curves that vary how the total
expected value is divided between the plaintiff and defendant. In what follows, this constant of
integration can be thought of as a free variable that a lawmaker can set to independently pursue

equitable goals or to enhance ex ante investment incentives.

B. Examples

In this section we shall consider some elementary but, we hope, instructive examples involving
the continuous call and continuous put rules. We shall take the joint probability distribution
density to be constant (i.e. uniform distribution) throughout some geometrical region in the (Vi, Va)
plane. We remind the reader that a rectangular region having sides parallel to the coordinate
axes corresponds to an example of uncorrelated distribution?®, whereas an arbitrary shape implies
correlations.

Uniform distributions lead to particularly simple expressions for the functions Ar(s) and Aa(s),
as we shall now see. We refer to figure 3 for further discussion of this fact. There, the point S
corresponds to Vi1 = Va = s. Points, where the edge of the area is intersected by the upward
and rightward rays drawn from S are labeled U and R, respectively. Then the functions Arn(s) =
f(s, s)/ [ f(t, s)dt and Xa(s) = f(s, 5)/ [ f(s,t)dt assume the following simple forms: Ar(s) =
1/|SR| and Aa(s) = 1/|SU|, where |AB| denotes the distance between points A and B. Similarly,
for the functions um(s) and pa(s) that appear in the continuous put case, we obtain (see figure 4):
pn(s) = 1/|SL| and pa(s) = 1/|SB|. We now use these results to compute damages functions in

various example settings.

26Alndeed7 for the rectangular region f(VH,VA) = fH(VH)fA(VA), with fo(Vn) = 1/(VF*™ — Vl-'[ni“) for Vo €
V™ Vir®] and fa(Va) = 1/(VAM™ = V') for VA € [V, VA'¥], is constant everywhere in the rectangle having

corners (Vl-?]in, Amin), (Vﬁnin, A, (VR VAR, (VS Amin) and 0 elsewhere.
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Fig. 3.— Determining Ar(s) and Aa(s) for Fig. 4.— Determining pr(s) and pa(s) for
a uniform distribution. a uniform distribution.

1. Uncorrelated uniform distribution: continuous call rule

VA ,,
gmax 7 VA = VI'I
max _| .
A L
vinl L«
., Smin
a : Vn
min max

Fig. 5.— Uniform distribution in a rectangle.

Let us take the joint probability distribution to be uniform in the rectangle Vi1 € [Vl-‘[“i“; Vi,
Va € [Vin; VInax]| For this case, we have Ar(s) = 1/(V®X —s) and Aa(s) = 1/(VR*¥ —s). For the
sake of concreteness, let us further assume that Vi7" > V"%, In this case, the boundary condition
(see section A) is enforced at Smax = VI***. To solve for D(s), we multiply the equation it obeys

by the integrating factor (V{'®* — s)(V"** — s), thus obtaining

(VERax _ ) (VX _ 5)D'(s) = (V8% 4 V2% _ 95)(D(s) — s). (I11.1)

Then, transferring the term proportional to 15(9) to the left hand side and integrating gives
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~ 2 1
(AT = ) (V™ = ) D(s) = 38° = S (V™ + VE™)s* + K, (111.2)
where the constant of integration K is fixed by the boundary condition that 5(3) remain finite at
s = V% 0 At that value of s, both sides of the equation must vanish. Straightforward algebra

then yields the following expression for D(s):

. 1 i i 9 1 (y/max _ j/max 2
D(s) = E(VH + Vax) 4 35~ 6( vaax _AS ) : (I11.3)
h 1T

which we remind the reader holds for the Vi > V{"®* case of the uniform rectangular distribution.

Inserting this solution for 5(8) into the equation obeyed by Dr(s) gives

1 Vrrlnax _ Vinax 1 (Vrrlnax _ Vinax)?
6 Vix—s 6 (Viei—s)?
which may be straightforwardly integrated. Thus, one obtains Dr(s) and, using the relation
Da(s) = D(s) — Dr(s), also Da(s):

Dr(s) = % — (111.4)

1 1 max max max 1 (‘/max - Vmax)?

Dn(s) = 35+ g(VH — V) In (Ve — s) — : ?Vﬁmx _AS) + A, (111.5a)
1 1 1

Da(s) = 35— COF™ = VE™) (™ =) + (™4 VE™) = A, (IIL5b)

where A is the constant of integration. The resulting damages curve is shown in figure 6.

Damages functions Dn(s) and DA(s)
0.7 T T T T 0.7

D,(s]
0.65F ! 0.651

Damages curve
T T

Fig. 6.— Damages obtained by considering the distribution uniform in a rectangle [0;2] x [0; 1].
Left: Damages curve in the Dip — Da plane. Right: Actual damages functions Dyy(s) and Da(s).

The strategy just used also provides damages curves for the case V{** < V"™, in which case

we obtain
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1 1 max max max 1 (‘/max - §
Dn(s) = 35+ g(VA — Vinax) In(VRax — ) — G ?ng _HS) ) + A, (I11.6a)
1 1 1
Da(s) = §s - E(VEZ‘X — Vi) In(VI™ —s) + E(VEaX + Vi) — A, (TT1.6b)
as well as for the case Vi = V{'®*, for which we obtain
1 max 1
Dna(s)= V™™ + s+ A. (T11.7)

6 3

We note that especially simple damage curves (i.e. they obey D — Da = const) result for
symmetrical problems, by which we mean settings for which Ar(s) = Aa(s) [or, in the put-rule case,
pr(s) = ua(s)]. These situations commonly arise for probability distributions that are symmetric
with respect to the interchange of players: f(Vir,Va) = f(Va, Vi1). Also note that setting V{nin =
Vmin — 0 and VP2 = V3% — 1 would correspond to the special case addressed by Ayres and
Balkin.?”

2. Uncorrelated uniform distribution: continuous put rule

Let us consider the same geometry as we did in the previous example, i.e., a uniform rectangular
distribution. Now, however, for the sake of concreteness, let us assume that Vﬁ“i“ <V A“i“, in which
case the appropriate boundary condition is enforced at sy, = Vg‘i“. Again we multiply the equation
of Table 4 by a suitable integrating factor, thus obtaining

(5 = ViT™) (s = VA™) D' (s) = (25 = VI = VE™™)[s = D(s)]. (111.8)

Integrating and applying the boundary condition gives

~ 1, i iy 2 (VRN - ypin)?
D(s)=-(VA"™ +Vr™) + 58+ = . . I11.9
(s) 6(A + Vi )+39+6 s — ymin (111.9)
Then, substituting this result into the equation for Da(s) gives
1 1 1 . . 1 ‘/min _ Vmin 2
Diy\(8) = ———= |55 — (VA" + Vi) — U i) (111.10)

s—Vmin {37 6 6 s— Vin ’

and integrating and using Dri(s) = 5(9) — Da(s) gives the damages functions:

2TSee supra note 6.
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1 1

1 . . . .

Dn(s) = 35+ g(vgm — Vi) In(s — ViPa©) + ; (VA™ 4 Vi) 4 A, (I11.11a)
1 1 . . 1 (ymin _ y/min)2

Da(s) = —s— (VR — V") In(s — Vo) + —~ L ,‘:}}n ) _ A, (IIL.11b)
376 6 s—Vo

where A is the constant of integration. These particular results hold for the Vﬁ“in < V,&ni“ case of the

uniform rectangular distribution. Similar results can readily be obtained for the cases Vl—‘[“i“ =V, inin
and Vpin > ymin,

3. A simple correlated distribution: continuous call rule

The purpose of the present exercise is to exhibit an example in which the valuations are corre-
lated but, nevertheless, the damages curve may be explicitly obtained.

bV,

max _|

max
VI‘I

Fig. 7.— Uniform distribution in a triangle.

Here we take the joint probability distribution to be uniform in the equilateral triangle with
corners (0, 0), (V**,0) and (0, VX**¥). Alternatively, we view this region as the first quadrant (Vi1 >
0, Va > 0) bounded by the line (Vi7/V{P**)+(Va/VE*) = 1. The intersection with the line Vo = Vi
determines smax = V = Vs vex (Ve 4+ V%), For this distribution it is straightforward
to show that Ap(s) = A(s)ViPa*/ (VP2 + VaX) and Aa(s) = A(s) Vs /(VErax 4 VX) | where
A(s) = 1/(V — s). Consequently, the equation of Table 4 for D(s) takes on the simple form

D'(s) = :7 (IT1.12)

which can immediately be rewritten as
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% (V = s)D(s)| = —s, (111.13)

and hence integrated to give, upon applying the boundary condition 5(‘7) = ‘7, the result

D(s) = (V +5)/2. (111.14)

Substituting this result into the differential equation for Dryy(s) gives

1 /max
max max 5 rna.f(n max ° (11115)
mo = VA V—s 2V = VR

v (V42—

Dy(s) =

Integrating and using Da(s) = D(s) — Dyi(s) then gives the damages functions

1 V'rnax
D e | S| 1.1
ne) = Sy et (162
1 }/ max ~
D . S / — A 111.16b
A(S) 2 Vl_r[na.x _I_ V&naxs + ‘ ? ( 6 )

where A is, again, the constant of integration; these results can be expressed in the more symmetrical
form

VﬁnaX ‘/Eax + s
2 ‘/ﬁnax _I_ ‘/&nax
/max /max
Da(s) = A= _WiTHs (111.17b)
2 ‘//rr[na.x _I_ ‘//&nax

+ A, (111.17a)

4. Uniform triangular distribution: continuous put rule

This example turns out to be the least interesting of the four we have chosen. As long as the
lower left corner of the region in which the distribution is nonzero has the form of the rectangle, the
expressions for Arj(s) and Aa(s) are the same as for the rectangle (with Vi = Vit — ( in this
example). Hence, the damages functions are identical to those found for the rectangle. To rephrase
this more sharply, the damages functions do not depend on any probability weight that lies outside
the box Vi1 < Smax, VA < Smax (for the continuous put rule), or the box Vit > Smin, VA > Smin (for
the continuous call rule).

For completeness of the solution we do need to specify the damages for s > s™#*. In fact the
appropriate choice is to set Dr(s) = Dp(s™*), Da(s) = Da(s™) for s > s™?¥,
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5. General solution: continuous call rule

In this section we shall derive explicit formulas for the damages functions which can be used for
arbitrary distributions of valuations, correlated or otherwise. As we did for the examples, we first
solve for D(s), which can be seen from the equations in Table 4 to obey the differential equation

D'(s) = A(s)[D(s) — s] (111.18)

together with the boundary condition 5(smax) = Smax - As the differential equation is a first-order

ordinary one, we use the method of integrating factors, by which we find that

4 [f)(s) el Mu)ﬂ — —sA(s) el Mwdu (111.19)
ds
and hence that
D(s) el Mwdu — g 4 / Tt el A (111.20)

where K is the constant of integration.

Next, we determine K by applying the boundary condition. To do this, we consider the limit
8 — Smax, bearing in mind that A(s) is singular in this limit. By making use of the elementary
identity?8

SN ) / T A (p) A (111.21)

and observing that, in the limit s — s;,ax, We may replace ¢ on the right hand side of the solution
for D(s) by Smax, we recognize that the boundary condition is satisfied if K = 0. Thus, we arrive

at the solution

D(s) = / T () e i (I11.22)

To complete our task, we insert the formula for D(s) into the differential equation obeyed by

Dri(s) [we could equally well have used Da(s)] to obtain

Diy(s) = An(s) /m dt (t — s)A(t) e~ Jo M (111.23)

where Arp(s) is given in section A; integrating yields the result:

22 Obtained by observing that the r.h.s. is the integral of a total derivative.
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Dri(s) = A + / dt Ani(t) / T (= () e I M (111.24)
Smin t

As we now know D(s) and Dr(s), it is straightforward to construct Da(s), using Dr(s) +
Da(s) = D(s). As mentioned at the start of this section, these damages formulas can be used for
any joint probability distributions of valuations, the latter featuring through the quantities Ar(s)
and Aa(s); see section A.

6. General solution: continuous put rule

We devote this section to deriving the general solution for the continuous put rule. As only
slight modifications of the formalism for the continuous put rule are needed, the explanations will
be brief. As we know from Table 4, the combined damages D(s) satisfy

D'(s) = u(s)ls - D(s)], (111.25)

together with the boundary condition D(Smin) = Smin. Solving this equation together with the
boundary conditions by the method of integrating factors yields the following result:

D(s) = / dt ty(t)e= 7 rlwdu, (111.26)

Closer examination reveals that this form also satisfies the boundary condition at s — spin. Inserting
the result into the differential equation for Dri(s) from Table 2 and integrating, we obtain:

s t .
Dn(s) = A+ / dt pa(t) / i (t — ) A(t') e~ S nlw)de (111.27)

Smin Smin

The defendant’s damages Da (s) are obtained using Da(s) = D(s) — Dri(s).

IV. Game theoretic formulation

In passing to the continuum limit of the iterated call and put rules, we have designed the
damages functions in such a way that the plaintiff’s and defendant’s optimal strategies become
Vii(s) = Va(s) = s, i.e., each reveals his private information. The idea that incentive problems can
be efficiently solved by designing a mechanism under which rational participants reveal their private

information truthfully has become known as the revelation principle and was originally formulated
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by J. Mirrlees?®. As we now discuss, one can use the revelation principle to construct a general

formulation of the problem of efficient asset allocation in the context of liability rules.

We present a view of liability rules as games between the plaintiff and the defendant played
according to rules stipulated by the court. Each player makes a move (for instance, announces a
number that identifies one of his possible strategies), accounting for his private valuation and the
common information at his disposal. The players move at the same time, and the court chooses the
final asset holder and the damages exchanged (e.g. by looking them up in a table having rows and
columns corresponding to the plaintiff’s and defendant’s moves). In this strategic form, the players,
who have full knowledge of the payoff table, solve the problem of finding their optimal strategies,
and make their moves accordingly. However, they could equivalently delegate their decision-making
to the court by revealing their private valuation, provided they are assured that the court will
use reasoning identical to theirs and will make the corresponding moves on their behalf. It must
be stressed that in making a decision on the plaintiff’s behalf the court should pretend that it
does not know the defendant’s private valuation, and vice versa, in order to correctly mimic the
litigants’ behavior. The next step consists of combining the two steps—finding the optimal moves
and determining the winner (who will become the owner of the asset) and the damages—into
one. The court asks the litigants to submit their private information and uses these valuations
to determine who is to be the asset holder and the damages. The added requirement is that the
mechanism be incentive compatible®*—the litigants must not be able to gain any advantage by

misrepresenting their private information.

With this scheme in mind, if we are aiming at achieving the perfect efficiency, the court should
allocate the asset to the party with the higher private valuation. If the announced valuations are
si and sa, then the asset should go to the plaintiff if st > sa and to the defendant if s < sa (or
to either party if s = sa). Furthermore, the court sets the damages at D(s, sa); the function D
has to be crafted in an incentive-compatible way. Note that the function D (s, sa) will, in general,
be discontinuous across s;p = sa. It will, therefore, be convenient to work with two functions,
Dn(sm, sa) and Da(sm, sa), defined only for s;p > sa and sp < sa, respectively.

To find the necessary restrictions placed on Dr(sm, sa) and Da(sm, sa), let us assume that
the players have the private valuations Vi1 and Va, and that their optimal strategies s (V1) and
sa(Va) are not necessarily revealing. (They are revealing if si(Vir) = Vi1 and sa(Va) = Va.) We
shall then enforce the condition that if any one’s strategy is revealing, the opponent’s best response
is to follow a revealing strategy. In other words, we shall seek damages functions such that this
scenario is always realized.

As usual, we choose f(Vi1, Va) to denote the joint probability distribution governing the valu-

?® James Mirrlees, An Exploration in the Theory of Optimal Income Tazation, Rev. Econ. Stud. (1971), 15 J. Legal
Stud. 93 (1986)

#0Gee, e.g., infra note 36.
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ations. For convenience, we use the Heaviside function 6(z)3' as a tool for restricting the regions
of integration. For instance, we would multiply the integrand by 8(Vi; — Va) to restrict the re-
gion of integration to the half-plane Vi1 > Va. We also make use of #’s formal derivative (known
as the Dirac d-function) #'(z) = é(z). The latter has a meaning only inside an integral, so that
Jdzd(z — a) f(z) = f(a). We regard the litigants’ expected payoffs, mr1 and 7, as entities that
depend on the strategy functions spj(Vi1) and sa(Va)3?2. In the present context, in which the asset
goes to the higher bidder, the expected payoff functionals are given by

(), sa()] = //dvn dVa f(Vir, Vi) {8(s11 — sa)[Vit = Dri(sir, 5a)]

-I-G(SA —SH)DA(SH,SA)}, (IV.I)
malsn(s),sa(r)] = //an dVa f(Vi1, Va) {8(st — sa) Dri(sm, sa)
—I—O(SA — SH)[VA — DA(SH, SA)]} . (IV.Q)

The restriction on the damages, which we are seeking, is chosen so that the revealing strategies
si(Vir) = Vit and sa(Va) = Va make the litigants’ expected payoff stationary with respect to
variations in strategy:

SIS AYAPN [

Note that we are using functional derivatives,® rather than conventional ones. Functional deriva-

ma[sn(+),sa(-)] = 0. (IV.3)

tives can be thought of as partial derivatives in a multidimensional space of infinitely many variables
[i.e. 51 = s(V4),s2 = s(Va),..., where V4, V5, ... enumerate all real values]. In the simple case in
which w[s(V)] is expressible in the form

()= [ v pls(vV)), (IV.4)

the functional derivative turns out to be computable via®*:

on[s()] _

. (IV.5)
58(‘/) dS s=s(V)
#'The Heaviside function may be defined via §(z) = { (1) . z 8 .
m -_—

321t is customary to refer to entities that depend on functions, rather than, say, variables, as functionals of those
functions.

#Gee, e.g., C. Nash, Relativistic Quantum Fields, (Academic Press, London, 1978).

34Note that the functional derivative of a scalar is itself a function (of V).
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The stationarity conditions Eq. (IV.3) are, indeed, expressible in this form.

Intuitively, the condition émr/dsm (Vi) = 0 is solved by first fixing Vi1 and then optimizing the
payoff by adjusting sp. The procedure, repeated for all Vi1, yields the function equation

0= /dvA F(Viy, VA){ — 0(si — 52) DI (s11, 5) + 0(sa — 1) DU (511, 5)
—|-5(8H — SA)[VH — DH(SH, SA) — DA(SH, SA)]}, (1V6a)

where DU (s, 54) is used to denote the partial derivative dD(sm, sa)/dsm. Similarly, optimizing
the defendant’s payoff we obtain

0= /anf(VH, VA){B(SH — sa) DI (s11,88) = 6(sa — s11) D (511, 54)
+5(8H — SA)[VA — DH(SH, SA) — DA(SH, SA)]}, (1V6b)

where D(A)(SH, sa) denotes the partial derivative dD(sm, sa)/dsa. The next step is to determine
the constraints on D and D imposed by the demand that revealing strategies are an equilibrium.
Thus, we insert sip(Vir) = Vir and sa(Va) = Va into Egs. (IV.6a) and (IV.6b), arriving at the
conditions

0 = /dVA Vi Va){ = 6(vin = Va) DV (Vir, Va) + 6(Va = Vi) DS (Vin, Va) }
—I—f(VH, VH){VH — UH(VH, VH) — UA(VH, VH)}, (lV.7a)
- / aVin £ (Vin, Va){0(Vin = Va) DI (Vn, Va) = 8(Va = Vi) DY (Vin, Vi) §

+f(Va, VA){VA — Dr(Va,Va) — Da(Va, VA)}. (IV.7h)

Recall that section Tl was devoted to determining the conditions obeyed by the damages
functions for the continuous call and continuous put rules. We can recover these conditions from
the more general structure, just developed. 1o see this, recall that, under the continuous call rule,

the damages were determined by the losing bid. In the present language, this reads

Dn(Vi1,Va) = Dn(Va), (TV.8a)

DaA(Vi,Va) = Da(Vi). (TV.8b)
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Hence, not only do Dl(-[n) = D(AA) = 0, but also Dl(-[A) and D(An) can be taken out of the integrations
in Egs. (IV.7a) and (IV.7b), which then become

0 = Di(Vi) / dVa f(Vir, Va)B(Va — Vir) + F(Vir, Vi) Vit — Drn(Vir) — Da(Vin),
(IV.Qa)

0 = Diy(Va) / Vi £ (Vin, Va)B(Vir — Va) + f(Va, Va)[Va — Dri(Va) — Da(Va)l,
(IV.9h)

i.e., precisely the conditions on Dr(Va) and Da (V1) obtained in section III. Similarly, for the case
of the continuous put rule, by setting Drr(Vir, Va) = D (Vi) and Da(Vir, Va) = Da(Va) we recover
precisely the conditions on Dry(Vi7) and Da(Va) obtained in section III.  To conclude this section,
let us make a few remarks about the validity of these results. We have proven the stationarity of the
revealing strategies but have not demonstrated that they constitute maxima of the expected payoffs.
Thus, the conditions we have found are necessary, but not (necessarily) sufficient for the existence
of the revealing Nash equilibrium. In B, we shall prove that these conditions are also sufficient
for the uncorrelated case: f(Vi,Va) = fm(Vir) fa(Va). The uniqueness of the Nash equilibrium
remains an open problem even for the uncorrelated case.

V. Concluding remarks

In this Paper we have proposed two new types of liability rule—the continuous call and the
continuous put. In contrast to traditional liability rules, which depend on a single damage parameter
D, the continuous rules are specified by the functions Dr(s) and Da(s). These rules can be thought
of as the infinite-stage limit of the iterated call and iterated put rule or, equivalently, as an entirely
new procedure, akin to the Vickrey and first-best auctions. We have shown that these rules are
rich, in the sense that (a) all rules encountered, to date, can be expressed as special cases of either
the continuous call or the continuous put rule, and (b) by appropriately choosing Dri(s) and Da(s),
it is possible to design a mechanism capable of achieving the first-best efficiency, assuming that
the plaintiff and the defendant are both rational players. We have also reformulated the problem
using the revelation principle, and have obtained the conditions satisfied by the damages function
D(Vi1, Va); we have also shown how the continuous call and put rules manifest themselves as two
special cases of this most general mechanism.

The striking similarities between our results for the continuous call and continuous put rules
can be explained as a manifestation of the duality of these two mechanisms. Indeed, if we assume
the existence of an upper bound on private valuations, i.e., the price M such that, with probability
1, both Vi1, Va < M. [That Vi1, Va > 0is implicit.] To each asset, we may assign the corresponding
liability—a contract to acquire the asset for the amount M. For bilateral disputes, the right to
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be free from such liability represents the asset dual to the original one? It can be argued that the
outcome of the continuous call rule is equivalent to the outcome of the continuous put for dual
assets, and the outcome of the continuous put rule for the original assets is the same at that of the
continuous call for the dual assets. Thus, one might say that the distinction between the two is only
superficial. It remains to be seen whether any of the more general damages functions that satisfy
the efficiency conditions of section 1V correspond to rules of any practical value.

A famous (negative) result, due to Myerson and Satterthwaite® states that it is impossible
to have an efficient trading mechanism. To be precise, whenever domains of non-zero probability
overlap, no mechanism is possible that is both (a) individually rational [for players to participate
in the procedure] and (b) first-best efficient. Work by Chatterjee and Samuelson®” relaxes the
second constraint in order to solve the problem for the case of a distribution that is uniform in the
unit [0;1] x [0; 1] square. The present Paper relaxes the first constraint?® While courts can assure
that the disputants’ expected payoffs (given the court’s knowledge of the general value probability
distributions) are positive, the payoffs of privately informed playoffs can be negative. But this
potential participation problem is equally acute for traditional liability rules?”

Thus, in future work, it would be useful to analyze the extent to which a participation constraint
limits the analysis. For now, it is at least clear that litigation often extinguishes the participation
choice of one disputant. Defendants, by polluting (or by seeking a declaratory), can often force
plaintiff participation in the mechanism. And plaintiffs, by suing, might often force defendant
participation. The possible need to assure the participation of only one relevant disputant might
mean that it may be appropriate for courts to divide the total payoffs (through its setting of A)
in a way that assures that the appropriate range of disputes is subjected to the continuous call or

continuous put mechanism.

35This feature is reminiscent of the call-put parity result for vanilla liability rule. See supra note 7 and supra
note 10.

% R.B. Myerson and M.A. Satterthwaite, Efficient Mechanisms for Bilateral Trading, J. of FEcon. Theory 29, 265
(1983).

3TK. Chatterjee and W. Samuelson, Bargaining under Incomplete Information, 31 Oper. Research 835, 837-38
(1983).

% peter Cramton, Robert Gibbons, and Paul Klemperer, in Dissolving a Partnership Efficiently [Econometrica
55, 615 (1987)], formulate a set of conditions under which a partnership (i.e. three or more players dividing two or
more assets) can efficiently be dissolved. They restrict their attention to symmetric, uncorrelated distributions, and
formulate additional constraints on the distributions that make efficient allocation possible.

%Saul Levmore, Unifying Remedies: Property Rules, Liability Rules, and Startling Rules, 106 Yale L. J. 2149
(1997).
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A. Damage curves table

As we have shown in section II, the continuous call and continuous put rules (with appropriately
chosen damages functions) can be used to effectively simulate any of the discrete liability rules
mentioned in the Introduction. In this appendix, we provide a complete list of damages curves for
all sixteen rules. The rows in all tables correspond to the initial entitlement holder. The continuous
call is used throughout, except when simulating put options, for which the continuous put should be
used. Circles with letters I and A label points where the plaintiff and the defendant, respectively,
might place their bids.

Property rules Joint vetorules
A A
n
IS =
B 3
o o
@ @1 @ 0

Defendant
Defendant

B. Demonstration of Nash equilibrium for the uncorrelated case

The purpose of this appendix is to show that, provided that the distribution of valuations is
uncorrelated, and provided that the damages functions obey the conditions given in Egs. (IV.7a) and
(IV.7b), the strategy in which both players reveal their private information is a Nash equilibrium.
To see this, consider the equations obeyed by the damages functions for the uncorrelated case:
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Liability rules: Call type
Vanilla Double Iterated

Plaintiff

Defendant

0= [ Vs faVa) {=(V = Vi) D Vi, V) + 0(Va = Vi) D" (Vi V)
]

+fa (Vi) [V = Dn(Vin, Vin) = Da(Vir, Vin)], (B1)
0= /an Fn(Vin) {H(Vn — Va) DB (Vir, Va) = 8(Va — Vi) D (v, VA)}
+/m(Va) [Va = Dn(Va, Va) = Da(Va, Va)]. (B2)

Assume that the plaintiff’s valuation is Vi1. The plaintiff’s payoff from making the bid sp can,
provided that the defendant uses the revealing strategy sa = Va, be expressed as

rrlsn| V] = / AV Fa(Va){8(st — V) [Vit — Dra(sm, Va)l + 0(Va — si1) Da(sm, Va)}.  (B3)

Now, we can safely assume that sp is such that fr(sp) > 0%° Then, by differentiating the
plaintiff’s payoff 7r[sr|Vir] with respect to sr, and comparing the result with Eq. (IV.7a) for
damages (having substituted vy = sy in the latter), we can see that

O For instance, the court can assess a huge fine [setting DH(SH,UA) = 400 or DA(SH,UA) = —oo] on a player

(plaintiff) who reports an impossible private valuation.
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%FH[SHWH] — fa(sm) (Vir — sm), (B4)

i.e., dnrp/dsn > 0 when s < Vip and dnn/dsn < 0 when sip > Vi, This proves that sgp = Vi is
the plaintiff’s best response. This analysis, applied to the defendant’s payoff, shows that sx = Va

is the defendant’s best response, provided the plaintiff uses the revealing strategy. Therefore, the
revealing strategies do, indeed, form a Nash equilibrium.
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Liability rules: Put type

Vanilla

Double

Iterated

Plaintiff

Defendant




